A Current Assessment of the Nature of PM_{2.5} in Steubenville, Ohio, Using SCAMP Monitoring Data Ohio Air Quality and Coal Research Symposium Athens, Ohio December 3, 2004 D. P. Connell, S. E. Winter, J. A. Withum CONSOL Energy Inc. Research & Development South Park, Pennsylvania #### Why Steubenville? - Most polluted of the Harvard Six Cities - Mean $PM_{2.5}$ Concentration = 29.6 μ g/m³, 1979-1985 - Extensive PM_{2.5} data record - Major changes have occurred - Steubenville-Weirton MSA lost 4,200 manufacturing jobs in 1990s (decline of steel industry) - Population decreased by 7.4% in 1990s - Likely a nonattainment area under PM_{2.5} NAAQS # The Steubenville Comprehensive Air Monitoring Program (SCAMP) - Two-year comprehensive program for monitoring PM_{2.5} and co-pollutants - Steubenville, Ohio, and surrounding region - May 2000 May 2002 - Two major study components: - Indoor/Personal - Personal sampling of children and elderly volunteers - Indoor sampling in participants' homes - Outdoor - Participants' homes - Central site in Steubenville - Four remote sites located at cardinal compass points around Steubenville ### **SCAMP Outdoor Ambient Goals** - Compare urban PM_{2.5} concentration / composition with remote PM_{2.5} concentration / composition (determined using FRM) - Study associations among PM_{2.5}, copollutants, and weather conditions - Provide a comprehensive database for use in epidemiological and transport studies and in compliance program development #### Steubenville Site - PM_{2.5} FRM - Mass (1/1 days⁻¹) - lons (1/4) - Elements in WS Fraction (1/4) - PM_{2.5} Speciation Sampler - EC, OC (1/4) - Elements in Acid-Digestible Fraction (1/4) - PM_{2.5} TEOM - Mass (continuous) - PM₁₀ FRM - Mass (1/1) - lons (1/4) - Elements in WS Fraction (1/4) - FRM or FEM Gas Analyzers - SO₂, CO, NO_x, O₃ (continuous) - 10-m Meteorological Tower - Weather Conditions (continuous) - Burkard Volumetric Spore Trap - Pollen and Mold Spores (1/1) # Steubenville PM_{2.5} Concentration / Composition May 2000 - May 2002 ## **Seasonal Variability** ### **Spatial Variability** Intersite Coefficients of Divergence Based Upon 21 PM_{2.5} Components "Background" Sites $$CD_{jk} = \sqrt{\frac{1}{p} \sum_{i=1}^{p} \left(\frac{x_{ij} - x_{ik}}{x_{ij} + x_{ik}} \right)^{2}}$$ #### **Local Source Contributions** PM_{2.5} and Major Components #### **Local Source Contributions** #### **Elements in the Water-Soluble Fraction** | | % ST
> BG | Loc.
(ng/m³) | Loc. (% of BG) | |----|--------------|-----------------|----------------| | Al | 71 | 4.8 | 49 | | As | 73 | 0.66 | 43 | | Ba | 79 | 0.7 | 65 | | Cd | 71 | 0.10 | 31 | | Ca | 73 | 28 | 46 | | Со | 43 | -0.004 | -10 | | Cu | 59 | 0.7 | 31 | | Fe | 71 | 11.8 | 106 | | Pb | 69 | 3.1 | 78 | | | % ST
> BG | Loc.
(ng/m³) | Loc. (% of BG) | |----|--------------|-----------------|----------------| | Mg | 79 | 18 | 145 | | Mn | 83 | 4.5 | 154 | | Ni | 47 | 0.1 | 11 | | K | 59 | 16 | 21 | | Se | 54 | -0.44 | -9 | | Na | 73 | 19 | 32 | | Sn | 38 | -0.017 | -9 | | V | 63 | 0.44 | 66 | | Zn | 75 | 25.5 | 140 | # Gas and Weather Percentiles On Highest / Lowest PM_{2.5} Days ## **Seasonally Dependent Correlations** $R^2 = 0.03$ m = 0.16 $R^2 = 0.52$ m = 0.53 ### **Diurnal Variability** #### PM_{2.5} Episode – Hourly Data January 26 – January 30, 2002 #### PM_{2.5} Episode – Hourly Data January 26 – January 30, 2002 #### PM_{2.5} Episode – Hourly Data July 30 – August 4, 2001 # PM_{2.5} Composition During Episodes Ions, Carbon, Elements in Water-Soluble Fraction #### Summary - Average PM_{2.5} concentration in Steubenville has decreased by more than 10 μg/m³ since Six Cities Study; still more than 3 μg/m³ above annual NAAQS (based on 2000-2002 data) - Sulfate (31.3 wt%) and organic material (25.0 wt%) are the major components of PM_{2.5} in Steubenville - Local sources on average contribute an estimated 4.6 μg/m³ to Steubenville's PM_{2.5} concentration - Sulfate, Nitrate, and Ammonium account for about 2 μg/m³ - Among elements within the water-soluble fraction, Mg, Mn, Zn, and Fe show the greatest percent urban increment - PM_{2.5} concentrations were positively associated with CO, NO_x, and SO₂ concentrations - Associations between PM_{2.5} and some gaseous pollutants (i.e., NO_x and CO) were strongly dependent upon season #### Summary - PM_{2.5} exhibited a diurnal pattern similar to CO and NO_x; concentrations > 65 μg/m³ were never observed during the mid-afternoon - High PM_{2.5} concentrations tended to occur on warm, highpressure days; low concentrations tended to occur on cool, windy days with low solar radiation - PM_{2.5} episode case studies: - Cool season (nocturnal temperature inversions) - PM_{2.5} concentrations showed strong diurnal variation - Strong associations among PM_{2.5}, NO_x, CO, SO₂ - Enrichment: Zn, Mn, Mg, EC, Ca, Pb - Warm season - PM_{2.5} concentrations more chronically elevated - Associations among PM_{2.5} and gases not as strong - Enrichment: SO₄²⁻, NH₄⁺, Ni, Fe, Sn #### **Publications** - Connell et al. (2004) The Steubenville Comprehensive Air Monitoring Program (SCAMP): Overview and Statistical Considerations, J. Air & Waste Manage. Assoc., in press. - Connell et al. (2004) The Steubenville Comprehensive Air Monitoring Program (SCAMP): Associations Among PM_{2.5}, Co-Pollutants, and Meteorological Conditions, *J. Air & Waste Manage. Assoc.*, in press. - Connell et al. (2004) The Steubenville Comprehensive Air Monitoring Program (SCAMP): Analysis of Short-Term and Episodic Variations in PM_{2.5} Concentrations Using Hourly Air Monitoring Data, *J. Air & Waste Manage. Assoc.*, in press. #### **Funding** U.S. DOE - National Energy Technology Laboratory Ohio Coal Development Office Electric Power Research Institute American Petroleum Institute National Mining Association American Iron and Steel Institute **Edison Electric Institute** National Institute of Environmental Health Sciences U.S. Environmental Protection Agency CONSOL Energy Inc. #### **Participating Groups** CONSOL Energy Inc. R&D Harvard School of Public Health **Ohio University** Franciscan University of Steubenville Wheeling Jesuit University St. Vincent College **Optimal Technologies** Air Quality Sciences, Inc. Control Analytics, Inc.